

Large-scale Pre-training for Grounded Video Caption Generation

Evangelos Kazakos¹, Cordelia Schmid², Josef Sivic¹

¹Czech Institute of Informatics, Robotics and Cybernetics at the Czech Technical University in Prague ²Inria, École normale supérieure, CNRS, PSL Research University

OVERVIEW

Goal: Simultaneous captioning & grounding of nouns to bounding boxes

is adding ingredients from a bowl and cup into a jar to mix them well

Motivation

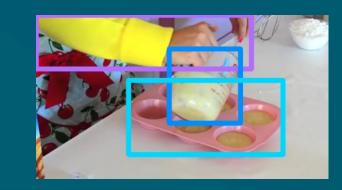
into glass Learn by demonstration

Contributions

- Automatic annotation method
- HowToGround1M dataset
- Manually annotated iGround dataset
- ➤ The GROVE grounded video caption generation model
- SOTA on 5 grounding datasets

AUTOMATIC ANNOTATION METHOD

Stage 1: Frame-level grounding with image VLM



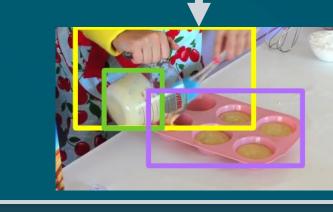
A person is pouring a

caption

instance

nouns'

into a pink tra



A woman is pouring liqui into a muffin tin

Someone is pouring batter into a muffin cup

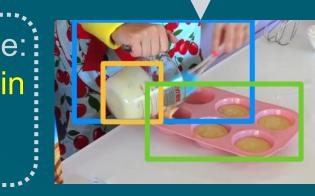
reference

nouns

Stage 2: Caption aggregation with LLM

is pouring a liquid into a tra

Stage 3: Connect boxes across frames with LLM



Grounding Module Temporal Objectness N=2 objects: {'person', 'dog'} **Bounding Box** Grounding Video Encoder: $\mathcal{V}_{o}(\cdot)$

Video Prompts

THE GROVE MODEL

 \triangleright 3D convolutional adapters for spatio-temporal modeling $(a(\cdot))$

Global Video Encoder: $\mathscr{V}_{\rho}(\,\cdot\,)$

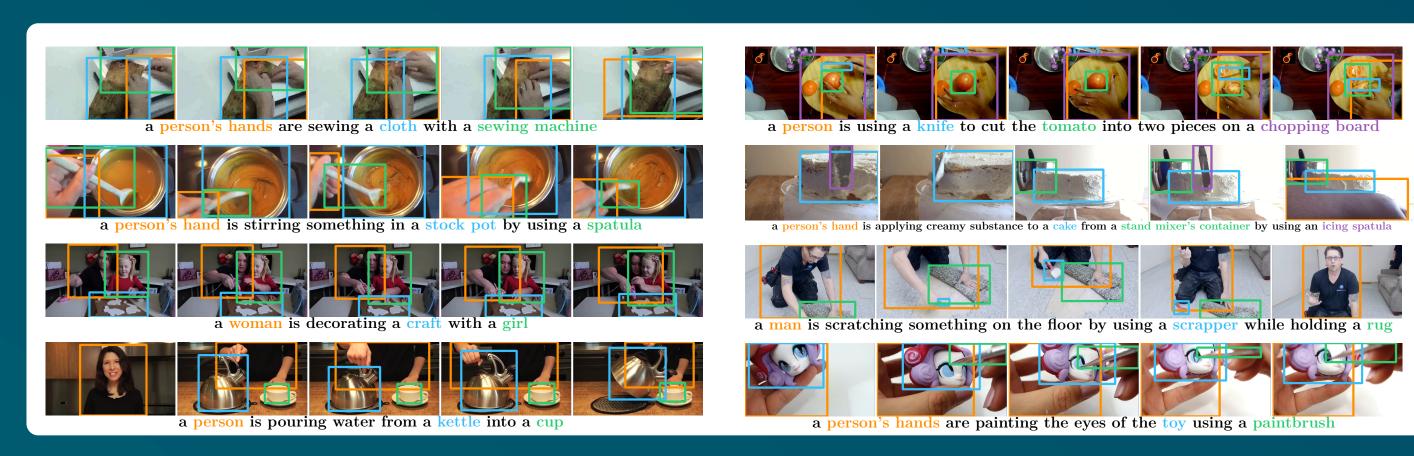
- Captioning module generates caption and tags noun phrases
- \triangleright Cross-attention of embedded noun phrases with frame-level features $(D(\cdot))$
- > Temporal objectness head for predicting the presence of an object in a frame $(h_{tobj}(\cdot))$

HowToGround1M DATASET

iGround DATASET

Can you give a

description of this



- Automatically annotated
- > 1M videos

Captioning Module

- > 80.1M bounding boxes
- Ideal for pre-training

- Manually annotated
- ▶ 3500 videos
- Train/val/test: 2000/500/1000
- Ideal for fine-tuning and evaluation

TAKEAWAYS

- ➤ GROVE ≫ GLaMM in single-frame setup
- → GROVE ≫ automatic annotation
- Pre-training is crucial for grounding
- Pre-training + fine-tuning 🤚
- > SOTA in VidSTG
- Best performance without fine-tuning (interrogative)
- > ++ SOTA in ANet-Entities, GroundingYT, YouCook-Inter. (•• paper)
- Qualitative results (iGround)

R	ES	UL	.TS

Method	METEOR	CIDER	AP50	Recall
GLaMM	11.9	29.9	20.8	19.3
GROVE – PT (Ours)	14.3	50.6	27.0	22.5
GROVE – PT + FT (Ours)	21.4	83.5	31.7	26.2
Automatic annotation	13.8	40.0	27.1	20.4
GROVE – PT (Ours)	14.3	50.6	33.6	24.3
GROVE – FT (Ours)	21.0	77.7	15.8	18.1
GROVE – PT + FT (Ours)	21.4	83.5	40.0	28.7

iGround test set

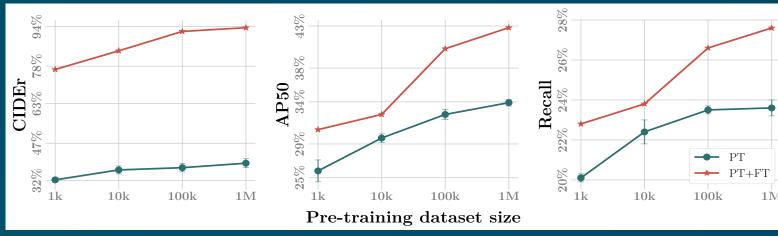
47.3

- Method STVGBert **TubeDETR**
- DenseVOC
- GROVE FT (Ours) GROVE – PT+FT (Ours) 63.7
- VidSTG (declar.)

Method	F	m_{Slo}
	Τ	U
PG-V-L (13B)	X	35.1
GLaMM + SAM	X	38.6
GROVE (Ours)	X	43.0
VideoGLaMM	•	39.7
GROVE (Ours)	√	55.0

VidSTG (inter.)

ABLATIONS



- Scaling: Performance scales with pre-training dataset size Fine-tuning benefits from scaling
- **➤** Temporal objectness: Little sacrifice in recall for **#** in AP50

